The Olympic Dam is a huge mining centre located in South Australia, 560km north-west of Adelaide. Home to a major oxide copper gold deposit producing copper, uranium, gold and silver, the site hosts an underground mine and an integrated metallurgical processing plant.
The project was opened in 1988 by WMC Resources, after discovering the large deposit in 1975. It was later expanded under a A$1.9 million programme, raising its capacity to 200,000tpa of copper and 4,300tpa of uranium, plus gold and silver.
In mid-2005, BHP Billiton gained control of WMC Resources in an A$9.2bn takeover. The company has a licence to mine the Olympic Dam until 2036 and it is extendable for 50 more years thereafter.
Processing facilities consist of a copper concentrator, hydrometallurgical plant, copper smelter, sulphuric acid plant, copper and gold/silver refineries. Recent expansions included a Svedala autogenous mill, additions to the flotation sections, two counter-current decantation thickeners, a new anode furnace gas-cleaning plant with additional electro-refining cells and an electric slag-cleaning furnace which has been scheduled to be rebuild in August 2017 during the Major Smelter Shutdown.
When client BHP Billiton wanted to utilise temporary special construction cranes for their Electric Slag Furnace Rebuild (ESFR) at Olympic Dam Mine Site (SA), they turned to Eilbeck Cranes and both worked closely together to bring to light a bespoke engineered solution for this special application.
The temporary construction cranes were planned to be used for the ESFR Major Shutdown (MSD) at the Olympic Dam facility.
The requirement was for the temporary construction cranes to be specifically designed ‘fit-for-purpose’, fabricated, tested and commissioned to meet the construction requirements of the ESFR strict standards whilst complying with Australian and key BHP Billiton Standards.
The Scope comprised the supply of several crane, of which two were specifically designed and built for the ESFR:
The ESFR-01 (Transfer Crane) primary operation is the removal of slag launders (and associated spill trays) to create a lift corridor (‘lift well’), support furnace demolition and new shell installation.
The requirement was for the hook to extend 1m beyond the Transfer Crane monorail beam end stop, to enable ‘place and pick’ transfers with ESFR-02. The hoist needed to be fixed in position to the trolley with the hook located at a maximum of 150 from the end of the trolley. As a result, the design of the Transfer Crane was a Cathead Hoist design. (Below Picture).
Transfer Crane Arrangement
The ESFR-02 (Circular Crane) primary operation is to be used for shell demolition shell construction and Composite Furnace Module (CFM) installation. This special crane consisted of a circular (closed) monorail system, where the crane end carriages travel on the circumferential direction for infinite rotations. The crane has two radial girders, where two cathead hoists (5t each) run. The cathead hoist has the ability to be extended (cantilevered) beyond the circumference of the circular monorail, in the same manner of ESFR-01. Cathead hoists can be operated independently or synchronised.
Circular Crane Arrangement
The centre line diameter of circular monorail is 11.08m, and it had to be divided into sections for ease of handling and installation on site. The assembly and erection plan of the circular monorail had to be engineered in a very specific way in order to be executed safely and efficiently on site.
Many geometrical and positional constraints had to be dealt with in order for the complete system to fit in the very tight available space, and function properly.
The cathead hoists are to travel together circumferentially (long travel of the crane) and travel both independently and synchronised in the radial direction (cross travel). The hoists needed be able to lift independently and synchronised.
FMG Iron Bridge Contract for 20 conveyor winches
The latest ES80 50 t Mucking Crane packed with heaps of safety features
New addition to the Eilbeck ES Hoist range 10 t x 70 m HOL with man riding features with dual…
Designed in Sydney by Eilbeck's Engineering Team, the 500t full portal crane, and the additional…
Eilbeck has been engaged in pre tender of the design of segment handling cranes for the precast…
100t and 2 off 50t Tunnelling Site Overhead Cranes for John Holland & KBR JV
The 100t full portal crane commissioned at the East Site primary crusher facility has passed the…
The new 25t x 17m span double girder overhead crane, manufactured in Eilbeck’s state of the art…
Eilbeck worked closely with BHP to develop the best crane solution for shell demolition, shell…
The higher class was a requirement due to the intended heavy use of these cranes, as Steel Force are…
We see the requirement of Eilbeck to manufacture in Australia to keep quality guaranteed high, and…
The crane capacities are huge, the main winch lifting 100t for heavy machinery retrieval from a 100m…
Eilbeck supplies 5t x 52.5m span EDL crane to Sikorsky Airport Base at Yerriyong
When global oilfield provider of engineered services and products to the offshore oil and gas…
As part of Rio Tinto Iron Ore’s Rail Capacity Enhancement project, Eilbeck Cranes has supplied three…
120t x 10m FPZLK
Eilbeck Cranes has successfully completed Factory Acceptance Testing and delivered 5 cranes capacity…
260t x 23.39m ZLK Crane, Airport Link Project - Brisbane
Australian Overhead Crane Engineering at the Height of its Game
10t Circular Crane
Veolia MBT Crane
Eilbeck cranes for NorthConnex
7 Mile Upgrade RSM
Overhead Cranes for Jandakot Project
InfoSitemapDisclaimer |
NewsCareersNewsletters |
MediaProjectsBrochures |
ContactContact UsOnline Quotes |